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Skyrmions on S3 and W3 from instantons 

N S Manton and T M Samols 
Department of Applied Mathematics and Theoretical Physics, University of Cam- 
bridge, Silver Street, Cambridge CB3 9EW, UK 

Received 26 January 1990 

Abstract. A recent proposal to derive Skyrme fields in flat space from Yang-Mills 
instantons is modified to obtain Skyrme fields on the 3-sphere and on hyperbolic 
3-space. Good approximations to the single Skyrmion on these spaces are found. 

1. Introduction 

To describe nucleons and their interactions in the Skyrme model it is necessary to  
find sensible truncations of the full field theory. In a given baryon number sector 
one seeks a finite-dimensional manifold of Skyrme fields whose coordinates are the 
physically relevant degrees of freedom at low energy. For the single Skyrmion this 
is straightforward, and the appropriate collective coordinates are well known. The 
two-Skyrmion sector presents greater difficulties. A candidate manifold for this case 
has been proposed in [l]. 

Recently it has been suggested that good approximations to such manifolds may 
be obtained by taking the holonomy of Yang-Mills instantons [2]. The construction 
is as follows. Let A t ( z )  be an SU(2) gauge field in R4, satisfying boundary conditions 
consistent with conforinally compactifying R4 to S4. One defines the associated SU(2)- 
valued Skyrme field in R3, U(a),  to be the holonomy of A,(.) along all lines parallel 
to the time axis. Formally, 

U ( z )  = P exp (- 1: A,(z ,  i ) d r )  

where P denotes path-ordering and we have written 2 = (z, T). The boundary con- 
ditions ensure that U ( a )  - 1 as IzI -t ca. If A, has charge k ,  then U is a Skyrme 
field of baryon number B = k. Under a gauge tranformation g+, U transforms to 
g&lUg,. Thus the definition of U is gauge invariant up to  the constant gauge trans- 
formations, which produce S0(3)i,ospin rotations of the Skyrme fields. Now let Ai 
be an instanton field. Allowing for the constant gauge transformations, the space of 
instantons of charge k is an 8k-dimensional manifold, M k .  Since time-translating Ai 
leaves U unchanged, M ,  generates an (8k - 1)-dimensional manifold of Skyrme fields 
with baryon number B = k. 

The l-instantons generate a seven-dimensional manifold of B = 1 Skyrme hedge- 
hogs, the coordinates being the position, orientation and scale size. In standard posi- 
tion the Skyrme field is 

U(=) = exp( i f ( r )G- r )  (1.2) 
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where 

f ( r )  = 7r [ 1 - (1 + $) -1'2] 

The minimum value of the Skyrme energy of this field is attained when X 2  N 2.11 and 
is less than 1% greater than the energy of the true B = 1 Skyrmion. The 2-instantons, 
and the 15-dimensional manifold of B = 2 Skyrme fields they generate, are described 
in [2]. This is the case of interest for two-nucleon dynamics. A modification of the 
Skyrme field (1.3) is obtained from the holoiiomy of a periodic, or thermal, instanton, 
integrated along one period. The energy is very slightly reduced for the optimal 
parameters [3]. 

In this paper we consider generating Skyrme fields by taking the holonomy along 
different sets of curves. In any such construction, it is necessary for the curves to be 
the orbits of a one-parameter suhgroup G of the conformal group SO(5 , l )  acting on 
R4. The holonomies then give a Skyrme field on a space which, if it is a manifold at  
all, has a metric well-defined up to scaling. Consider the following possibilities. 

(1) G is the group of time-tra.nslations. Its orbits-the time-lines-realise the 
equivalence R4 - R3 x R a.nd one obtains Skyrme fields on the quotient space R3. 
This is the flat-space construction described above. 

(2)  G is the group of dilations. The orbits are the rays based at the origin; they 
realise the conformal equiva.lence R4 \ (0) - S3 x R, and one obtains Skyrme fields on 
the 3-sphereI S3. 

(3) G is an appropriate SO(2) group. The orbits are then the circles appearing i n  
the conformal equivalence R4 \ S2 - H3 x S ' ,  and Skyrme fields on hyperbolic 3-space 
result. 

In the following we investigate the cases (2) and (3). We shall find that from 
the k = 1 instanton we obtain good approximations to the true B = 1 Skyrmion 
on S3 and H3. Before the calculations, two general remarks. Firstly, note that the 
conformal symmetry of the Yang-Mills equa,tions means that we are free to  employ any 
conformally equivalent description of the const,ructions. Hence the set of Skyrme fields 
generated by Mk is independent of t'he way the 3-manifold is realised a9 a quotient 
space. Secondly, observe that when one takes holonomies the conformal group acting 
on M ,  is broken down to the isometry group of the 3-manifold (E3,S0(4) ,S0(3,  1) 
in the three cases described) together with rescalings; this residual group commutes 
with G .  The a.ction of G on M, leaves the Skyrme fields unchanged, i.e. t,he orbits of 
G in M ,  are the sets of instantons giving rise to the same Skyrme field. 

2. Skyrme fields on S 3  

As stated above, we may obta.in Skyrnie fields on the 3-sphere by taking the holonomy 
along all rays based at  the origin in R4 (figure l (a)) .  Let ( p ,  e ,+ )  be hyperspherical 
coordinates on S3. The Skyrme field on S3 generated by the gauge field A,(.) is given 
formally by 
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Here 7(n) is the path along the ray {xi = sni : s E [O,oo)}, where ni is the unit vector 
(sin p sin 6 cos 4, sin p sin 6 sin 4, sin p cos 6, cos p ) .  Explicitly, one must solve 

(2.2) 
av - 
d S  
-U-' = - A . n .  a a  

along each ray, with initial data f i ( s  = 0) = 1; then U = 6 ( s  = m). Note that under 
gauge transformations, U + g;'Ug,, i.e. an SO(4) group of chiral transformations 
survives. For a general Skyrme field on the 3-sphere these are physical zero modes 
as there is no analogue of the requirement for Skyrme fields in R3 that U ( a )  -+ 1 as 
IzI + 00. 

Figure 1. The curves along which the holonomies are taken, in a plane in R4 con- 
taining the 4-axis. The instanton is centred on the 4-axis and is shown schematically, 
shaded. (a) The rays based at the origin; ( b )  the lines through the origin; (c) the 
coaxal system of circles. 

We consider just the L = 1 instantons. The 't Hooft formula is [4] 

A 2  
p = l +  (2.3) 

i 8 . P  
2 aa' p (Xi - C i ) 2  

Ai(.) = - i j  . . r a 3  

where ijaij(a = 1,2,3) is the anti-self-dual tensor E~~~~ - baibj4 + bajb i4 ,  and where 
ci is the centre of the instanton, and A(> 0) its scale. Without loss of generality, we 
may take ci = ( 0 , c )  with c 2 0. Varying c and A, together with SO(4) rotations in 
R4, generates the eight-parameter set of k = 1 instantons, MI. 
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I 

i.e. a B = 1 Skyrme hedgehog at  the north pole, in standard orientation. The 
parameter U appearing in t,he profile (2.5) measures the size; allowing also for the SO(4) 
rotations, which change the position and orientation of the Skyrme hedgehog on the 
3-sphere1 we have the expected seven-parameter family of Skyrme fields. The Skyrme 
fields are invariant under (A,  c) -+ (.A, ac);  this is just the action of G =: {dilations} on 
M I .  Note that (2.5) only holds for c # 0. For the case c = 0 one must take the c -+ 0 
(i.e. c - CO) limit; in this limit, the holonomy comes entirely from the singularity in 
A,(.) at the point z, = 0. The resulting profile is f (p)  = r - p ,  which corresponds to 
the identity map from S3 to SU(2). 

Thus far we have not specified the radius of the 3-sphere; in order to define the 
energy of the Skyrme fields we must now do so. The Skyrme energy of a hedgehog 
field on S3(R),  the 3-sphere of radius R, is 

E = 4s lT { Rsin2 p [ (g) 2 +  , 2 7 1  sin2 f + E 1 sin2 . f [ sin2 f + 2 ($) 'I} dp. (2.6) 
sin- p sin p 

For a given R, one may calculate the energy for the profile (2.5) as a function of U. 
We have computed the minimum energy E ( R )  (and the corresponding scale u(R))  
numerically over a range of R. Some of the values are shown in figure 2.  We find 
that for R less than the critical ra.dius 4, E ( R )  is precisely the energy of the true 
Skyrmion, namely G.rr2(R + R - ' ) .  For R greater than this, it is too large, with the 
error increasing monotonically to t1ia.t of the flat-space profile as R - 03. We clarify 
these results with a. few rema.rks. 
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Regarding the Skyrme field as a map S3(R) - S3( l), recall that for R 5 4 the 
true minimal-energy Skyrmion is, up to SO(4) rotation, the identity map; and that 
for R = f i  + E ( E  .(< l ) ,  it is a confornial map to O ( E ~ / ~ )  [5,6]. Now, consider the 
a >> 1 limit of (2.5): 

(2.7) 
x 

f(p) - K - p - - sinp.  
2u 

To O ( l / o ) ,  this also gives a confornial map, reducing to the identity map (up to  an 
SO(4) rotation) for U = M. As a consequence, after minimising the energy, the profile 
(2.5) is exact for R 5 f i  and correct to O ( E ’ / ~ )  for R = d + ~ .  The energy to O(E’) 
is 

The first two terms agree with the conforinal map and are exact. The O(E’) term-a 
fit with the numerical results-is rather better than that of the conformal map, which 
is - c 2 / 4 4  = - 0 . 1 7 7 ~ ~ .  

Turning now to the liinit R i M, set a = Rp6  and let p + 0 so that r = la1 
remains finite. From (2.4) and (2 .5 ) ,  keeping Ra finite, we obtain 

in agreement with the fla.t-space profile (1 .3) .  Asymptotically, we find 

E ( R )  - 12x2 (1.243198 - 0;;l - + - 0;;) . (2.10) 

The first term is the energy of the flat-space profile; the second may be obtained in 
terms of definite integrals of the flat-space profile and its derivatives. The last term 
is a fit with the numerical results. The corresponding formula for the true Skyrmion 
is [7] 

E,,(R) - 1 2 2  (1.231445 - - + - R2 R3 (2.11) 

We conclude this section by noting an interesting variation of the construction. 
This is to take the holonomy along not each ray, but each full line {xi = mi : 7 E 
(-co,M)} (figure l(b)). Expression (2.1) now defines askyrmefieldon S3 with B = 0, 
independently of the charge k of .4;(x). For the l-instanton (2.3),  the profile function 
becomes 

(2.12) 

with a = X/c as before. If c is small this clea.rly describes a Skyrmion at the north 
pole of S3 and an anti-Skyrmion a.t the south pole. Expression (2.12) shows that the 
magnitude of the holonomy along a full line depends on a single geometric quantity: 
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9- 

6- 

7 -  

the scale of the instanton, A, divided by the dist,ance of the line from the instanton, 
c s inp .  In the flat-space construction the distance is just r ;  replacing c s inp  by T ,  we 
recover the flat-space profile (1.3). 

As with (2.5),  we would like t80 see how well (2.12) works as an ansatz for true 
solutions of the Skyrme model. Accordingly, we have investigated numerically the B = 
0 solutions of the hedgehog form (2 .4) ,  and with reflection symmetry f ( ~  - p )  = f ( p ) ,  
over a range of R (see figure 3). Even this restricted sector has a rich structure, with 
infinitely many new solutions of increasing energy emerging as the 3-sphere grows 
larger. When R is small, the only solution is the zero-energy solution f(p) = 0. 
The first pair of new solutions appears a t  a cusp bifurcation a t  R 2: 2.77. The  
lower-energy solution is sta.ble wit,hin the hedgehog sector (though unstable to  general 
perturbations) and describes a Skyrmion and an anti-Skyrmion localised at  antipodal 
points of the 3-sphere. Its energy is twice that of a single Skyrmion on S’((R) ,  less a 
binding energy which tends t o  zero as R + CO. The higher-energy solution is unstable 
even within the hedgehog sector. Its energy is spread over the whole 3-sphere even for 
large R. As R + CO, its profile f ( p )  tends to a fixed forin and the energy increases 
linearly with R. 

6 -  
E 
12n* 
- 

5 -  

4- 

3-  

2 -  

t 
R 

Figure 3. The spectrum of B = 0 solutions on S3(R) of the hedgehog form (2.4), 
with reflection symmet.ry f(n - p )  = f(p). 

Now let us compare the extrema of the energy for a profile of the form (2.12). 
For R 5 2.82, the energy increases monotonically with CJ and there is only the trivial 
solution f ( p )  = 0. For R 2 2.82 there a.re two new extrema, a local maximum and 
minimum. These correspond to the true solutions described above. The energies a t  
these extrema, together with those of the true solutions, are shown in table 1 for 
various values of R. Once again it is found that the instanton-derived ansatz performs 
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rather well. To obtain reasonable approximations to the solutions that emerge at  the 
second cusp bifurcation at  R 2: 5.08, and at  subsequent bifurcations, one probably 
needs to use ansatze derived from instantons of charge greater than 1. 

Table 1. The energy of the two B = 0 solutions on S3(R) described in the text, 
and the corresponding results for the optimised ansatz (2.12). 

3 2.346 
2.388 

4 2.405 
2.846 

5 2.427 
3.380 

6 2.439 
3.944 

7 2.445 
4.524 

8 2.449 
5.113 

00 2.463 
N 0.616R 

2.359 
2.389 

2.425 
2.852 

2.449 
3.394 

2.461 
3.967 

2.468 
4.556 

2.473 
5.153 

2.486 
N 0.623R 

3. Skyrme fields on H 3  

To obtain Skyme fields on H 3  we take the holonomy along a set of circles generated by 
an appropriate SO(2) action on R4. A careful choice of coordinates renders the holon- 
omy of the field (2 .3)  essentially Abelian, and so computable by ordinary integration, 
as in the previous cases. 

It is convenient to  work in toroidal coordinates ( p ,  8,4 ,  v) in R4. These are defined 
by 

(sinh p sin 0 cos 4 ,  sinh p sin 0 sin 4,  sinh p cos 8, sin v) 1 
cosh p + cos v 

x i  = 

Here 8 and 4 are the coordinates of a 2-sphere; ,u E [0, ca) and v E [0,2n). Our circles 
are the lines of constant (p, 6 ,4 ) ,  parametrised by v. Note that in any plane containing 
the 4-axis the circles form a coaxal system (i.e. a linear family) of non-intersecting 
type with linear parameter l / t a n h p  [8]. (See figure l ( c )  and equation (4.1) below.) 
The R4 metric is 

ds2 = 1 
(cosh p + COS v)’ { [dp’ + sinh’ p(d8’ + sin2 6d4’)t-I dv2 1 . 

The 3-metric {.} is just the metric of H 3 ,  in spherical polar coordinates ( p , 6 ,  4 ) .  
Thus (3.2) is a realisation of the conformal equivalence Et4 \ S2 - H 3  x S’, and the 
holonomies along the circles give a Skyrme field on H 3 .  
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To find the holonomies we solve 

for U = D(v = 2 ~ ) ,  taking o ( v  = 0) = 1. Once again we should consider the effect of 
gauge transformations. U now undergoes locnl isospin rotations: 

V(P ,@,  4 )  --+ ~ , ' U ( P J , 4 ) L 7 ,  (3.4) 

where p denotes the point ( p ,  8 ,4 ,  v = 0) in R4. We may restore the gauge invariance 
of the construction by stipulating that within any class of gauge related Skyrme fields 
we are t o  consider only those of minimal energy. Then only an SO(3) of rigid isospin 
rotations survives, just as in fiat space. 

Solving (3.3) for an instanton centred on the 4-axis, with Ai given by (2.3), we 
obtain the hedgehog (2.4) (where now of course p ,  8 , d  are coordinates on H 3 )  with 
profile 

f ( p )  = A [ 1 - (1 + 7) U2 -7 
sinh- 1-1 

where 

2 
U =  x + (1 + c"A-1' 

(3.5) 

Note that U is restricted to  lie i n  the interval (0,1], and that the full range is only 
accessible when c = 0. The full set of l-instantons may be generated from those 
on the 4-axis by the action of a n  SO(3 , l )  subgroup of the conformal group. The 
corresponding action on t,he holonomies changes the position and orientation of the 
hedgehog in H 3 .  (This is jus t  the S O ( 3 , l )  that  commutes with G = S0(2).) Once 
again we obtain a seven-parameter family of Skyrme fields. 

When c = 0 and X = 1, and hence U = 1, the instanton is invariant under the 
G = SO(2) group we have chosen. The same applies to any instanton obtainable from 
this one by the action of the S O ( 3 , l ) .  This is most easily understood in a conformally 
equivalent description on the 4-sphere. After a suitable stereographic projection, the 
instanton is uniform over. the 4-sphere and hence SO(5) rotationally invariant, and G 
is an SO(2) subgroup of this SO(5) whose orbits on the 4-sphere are all the circles 
parallel to  one great circle. An S0(2)-invariant instanton may be identified with a 
charge-1 monopole in hyperbolic space [9]. The component of the gauge potential 
A ,  = A , d x i / d u  may be identified wit,h the monopole's Higgs field, and is independent 
of v. When U = 1, the Skyrme field profile (3.5) reduces to 

f(p) = ~ ( 1  - t a n h p )  (3.7) 

which is consistent with what, one obtains by exponeiitiating the Higgs field of a 
hyperbolic monopole. 

The Skyrme energy functional on hyperbolic space of curvature K = -Rq2 is 
given by the expression (2.6), but with s i n p  now replaced by s inhp,  and the integration 
range running from 0 to  03. We have computed the energy of the true B = 1 Skyrmion 
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on H3(R) ,  and also that of the optimised ansatz (3.51, over a range of R. The optimal 
value of B increases with IKI, and the upper limit, U = 1, is saturated at (KI 21 2.8. 
It is therefore natural to allow U to vary freely, even though the values U > 1 no 
longer arise from SU(2) instantons. The results are shown in figure 4. If one makes 
the restriction B 5 1, then the energy of the ansatz rises rather more steeply when 
JI'i"( > 2.8, so does not perform as well. The asymptotic formulae for small curvature 
(large R) corresponding to (2.10) and (2.11) are 

E ( R )  w 12n2 (1.243 198 + - 
for the ansatz, and 

Es,(R) - 127r2 (1.231445 + - (3.9) 

for the true Skyrmion. As before, the 1/R2 terms can be calculated exactly-they are 
the same as in (2.10)-(2.11) but, wit81i opposite sign-but our numerical results are not 
sufficiently accurate to fit the next-order term reliably. 

2 . 5  -/ 

0 5 10 1 5  20 

-K 

Figure 4. The Skyrmion on H 3 ,  curvature K = -K2. The curve is the energy of 
the optimised profile (3 .5) :  t,he +'s indicate values of the true energy. The S3 results 
for 0 5 K 5 1 are also displayed. 

4. Further remarks 

We conclude with some remarks on the profile (3 .5)  and its extension to the values U > 
1. We can interpret U /  sinh p in a geometrical way, just as we did for the corresponding 
quantities in the similar profiles (1.3) and (2.12). Expression (3.5) is the magnitude 
of the holonomy along the circle 

1 e , $  = constant 
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where r = 121. It is straightforward to conformally transform any given circle (4.1) 
into a straight line. The instanton will suffer a transformation too. One finds that 
the scale of the (transformed) insttant,on divided by its distance from the line yields 
u/ sinhp with CT given by (3.6). Thus one has the same interpretation as before. 

It is also interesting to  try to find a conforinally equivalent description in which 
all  the circles become straight, lines. To this end, note that all the circles, though 
non-intersecting in real space, pass through the pair of complex points (0, Ai). The 
required transformation is essentially an inversion in a 3-sphere centred at one these 
points, (0 , i )  say. Let us extend the coordinates xi to complex values, so that we are 
now working in the space C4, and employ the conformal transformation 

2xj 
2 .  - j = 1 , 2 , 3  

3 r2 + (x4 - i ) 2  

-2(z4 - i) + i .  x4 - 7’2 + (t4 - i ) 2  

The circles (4.1) become lines: 

i 
tanh y 

x4 = - I’ 0 , 4  = consta.nt. (4.3) 

Now consider the instanton (2.3),  which we take to be at the origin (c = 0). After the 
transformation, it has scale 2 X / ( X 2  - 1) and centre (0,i(X2 + 1)/(X2 - 1)). The formal 
Euclidean distance of the line (4.3) from the instanton is [ (A2  + 1 ) / ( X 2  - I.)] s inhp. 
The scale of the instanton divided by this distance is therefore U /  sinh ,U, where U is 
given by (3.6) with c = 0. Once again one recovers the same geometrical interpretation. 
Note that there is aparticular section of C4 which is invariant under the transformation 
(4.2), namely {z E R3; x4 = i l , t  E IR} . The space R3” = { ( z , t ) }  is naturally 
Minkowskian: the lines (4.3) are the time-like lines through the origin, which may be 
identified naturally with the points of H 3 .  

Let us now turn to the interpretation of the extended ansatz, i.e. values of the 
scale, CT, greater than 1. We shall work with the moduli space of 1-instantons. It 
is convenient to factor out the constant gauge transformations and consider the five- 
dimensional space M = M , / S 0 ( 3 ) ,  whose coordinates ( A  # 0, c,  c4) are the scale and 
the centre of the instanton. Locally, M may be regarded as Pi5, but the points with 
f X  should be identified, since they correspond to the same instanton. The boundary 
X = 0 may be identified with ordinary space, Iw4, and it is important to note that 
a conformal transformation T on IR4 induces a conformal transformation f’, on M ,  
whose restriction to the hyperplane X = 0 is T .  Recall that the orbits of G acting 
on moduli space are the sets of instantons giving rise to the same Skyrme field. Just 
as the orbits of G in R4 are the circles (4.1), so the orbits of G in M are n similar 
family of circles C.  In any plane containing the c4 axis they form a coaxal system of 
non-intersecting type. For instance, i n  the plane c = 0, (3.6) gives 

This should be compa.red with (4 .1 ) ;  the 1inea.r parameter is now l/o. We see that there 
is a circle’s worth of insta.nt,ons which generates the Skyrmion of scale U < 3 . .  When 
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U = 1 the circle degenerat,es t,o a point: the Skyrmion is generated by a G = SO(2)- 
invariant instanton. When a > 1 the circle (4.4) has no real points. The corresponding 
gauge fields are still self-dual, a.part from singularities, but the gauge group is now 
SL(2,C) rather than SU(2). 

By extending the coordinates of Ad to complex values we see there is no distinction 
between U 1 and U > 1. In pa.rticula.r, consider the instanton with imaginary centre 
(0 ,  i) and scale A. This generates a Skyrinion of size a = 2 / A ,  which may be arbitrarily 
large. After the transforma.tion (4.2), t8he instanton has the same centre, and new 
scale a. Note that its dista.nce from the line (4.3) is sinhp, so the scale divided by 
this distance is again U/ sinh p .  More genera,lly, we may consider the transformation 
induced by (4.2) on all tthe points of A!. The circles C in M transform into lines 
through the origin. As before, we obtain a n  interesting representation by considering 
the restriction to the inmriant section {(A,c) E R4;c4 = iy ,y  E R}. The points 
inside the light-cone y2 = X 2  + c2 represent the standard instantons; they generate 
the Skyrmions with the restricted scale. The points outside represent the gauge fields 
which give rise to the Skyrmions with the extended sca.le. On the light-cone itself, each 
light-like line corresponds to an SO(2)-invariant instanton i.e. a hyperbolic monopole. 

We may summa.rise t,he result,s of these complex transformations as follows. To 
obtain a Skyrme field on S3 (with B = 0) we evaluate the holonomy of an instanton 
of scale U ,  centre ( 0 , l )  along tShe lines x4 = r/ tanp .  To obtain a Skyrme field on 
H 3  we evaluate the holonomy of an instanton of scale a ,  centre (0, i )  along the lines 
z4 = ir/ tanhp.  In ea.ch case a and p are real. 
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